您当前的位置:首页 > 科学研究 > 学术报告

科学研究

学术报告

Orientable hyperbolic 4-manifolds over the 120-cell
发布时间:2018-08-29     点击次数:
报告题目: Orientable hyperbolic 4-manifolds over the 120-cell
报 告 人: 马继明 副教授(复旦大学)
报告时间: 2018年09月06日 10:30--11:30
报告地点: 理学院东北楼二楼报告厅(209)
报告摘要:

 A hyperbolic manifold is a manifold $M$ with a complete sectional curvature $-1$ Riemannian metric  of  finite volume. Since there is no hyperbolic Dehn filling theorem in higher dimensions, it is difficult to construct concrete hyperbolic manifolds of small volume in dimension at least four. We build up a census of closed hyperbolic 4-manifolds of volume $frac{34pi^2}{3}cdot 16$ by using small cover theory over the right-angled 120-cell. In particular, we classify all the orientable 4-dimensional small covers over the 120-cell and obtain exactly 56 many up to homeomorphism. Moreover, we calculate the homologies of the obtained orientable closed hyperbolic 4-manifolds and all of them have even intersection forms.  This is a  joint work with Fangting Zheng.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:maths@whu.edu.cn  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院