您当前的位置:首页 > 科学研究 > 学术报告

科学研究

学术报告

NONUNIQUENESS FOR A FULLY NONLINEAR BOUNDARY YAMABE-TYPE PROBLEM VIA BIFURCATION THEORY
发布时间:2018-06-26     点击次数:
报告题目: NONUNIQUENESS FOR A FULLY NONLINEAR BOUNDARY YAMABE-TYPE PROBLEM VIA BIFURCATION THEORY
报 告 人: 王一 (Johns Hopkins University)
报告时间: 2018年06月27-29日 10:00--11:00
报告地点: 理学院东北楼二楼报告厅(209)
报告摘要:

 We consider $sigma_k$-curvature equation with $H_k$-curvature condition on a compact manifold with boundary $(X^{n+1}, M^n, g)$. When  restricting to the closure of the positive $k$-cone, this is a fully nonlinear elliptic equation with a fully nonlinear Robin-type boundary  condition. We prove a general bifurcation theorem in order to study nonuniqueness of solutions when $2k<n+1$. We explicitly give examples of  product manifolds with multiple solutions. It is analogous to Schoen’s example for Yamabe problem on $S^1times S^{n-1}$. This is joint work  with Jeffrey Case and Ana Claudia Moreira.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:maths@whu.edu.cn  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院