您当前的位置:首页 > 科学研究 > 学术报告

科学研究

学术报告

Biharmonic Conformal maps between Riemannian manifolds
发布时间:2018-06-19     点击次数:
报告题目: Biharmonic Conformal maps between Riemannian manifolds
报 告 人: Ye-Lin Ou (Texas A & M University-Commerce, USA)
报告时间: 2018年06月22日 15:00--16:00
报告地点: 理学院东北楼四楼报告厅(404)
报告摘要:

 Biharmonic maps are maps between Riemannian manifolds that are critical points of the bienergy functional, they are solutions of a system of 4thorder PDEs. Biharmonic maps include harmonic maps, biharmonic functions and biharmonic submenisolds as special examples. The talk will be focused on biharmonic conformal immersions, biharmonic conformal submersions and their relations to the maps between manifolds that preserve solutions of bi-Laplace equations, and biharmonic conformal maps between manifolds of the same dimension and their links to Yamabe-type equations.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:maths@whu.edu.cn  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院