Dynamics of an SIS epidemic reaction-diffusion model
发布时间:2018-05-30 点击次数:
报告题目: | Dynamics of an SIS epidemic reaction-diffusion model |
报 告 人: | 邓铿 教授(University of Louisiana at Lafayette) |
报告时间: | 2018年06月15日 16:20--17:40 |
报告地点: | 数学院二楼报告厅 |
报告摘要: | In this talk, we study an SIS reaction-diffusion model with spatially heterogeneous disease transmission and recovery rates. A basic reproduction number $mathcal{R}_0$ is defined for the model. We first prove that there exists a unique endemic equilibrium if $mathcal{R}_0> 1$. We then consider the global attractivity of the disease-free equilibrium and the endemic equilibrium for two cases. We show that the disease-free equilibrium is globally attractive if $mathcal{R}_0le 1$, while the endemic equilibrium is globally attractive if $mathcal{R}_0> 1$. |